Will geoengineering be the parachute that averts climate disaster?

Will geoengineering be the parachute that averts climate disaster?

Downtown Squamish, located along Howe Sound, between Whistler and Vancouver.

Story/photos by Allen Best

Two years ago this weekend I was in British Columbia, with two must-see items on my agenda. I had spent the previous five days, courtesy of the Canadian government, visiting first Toronto and then Vancouver. The consulate in Denver, where I live, wanted journalists and others to see and hear about all the wondrous things being done in Canada’s two marquee cities to quell greenhouse gas emissions.

After our final Vancouver visit, on my own agenda and on my own dime, I rented a car and drove up the Sea-to-Sky Highway. In Whistler, I wanted to see how the ski company was helping save the planet. And in Squamish, 40 minutes why of Whistler, along Howe Sound, I wanted to see where a great experiment was underway that might help save Whistler’s snow. My curiosity about the Squamish project was well founded as recent news shows.

In Whistler, I was graciously given a tour of the mountain, the Peak 2 Peak gondola, the bike park, and more. Our last stop, the Fitzsimmons Creek run-of-the-river hydroelectric project, was the most important to me. Though it wasn’t all that much to look at, it represented perhaps the most important effort up until then of a ski company taking responsibility for its role in this giant energy challenge facing humanity.

Despite the Fitzsimmons hydroelectric project, despite the new solar farm that makes the Colorado ski area of Wolf Creek 100 percent solar powered, despite all the wondrous things Vancouver and Toronto are doing, we’re still speeding into an unmapped climatic wilderness.

In April, we tripped across the threshold of 410 parts per million, a 130 ppm increase since the start of the industrial age two centuries ago. Most of that increase has occurred since I was born in the 1950s. We’re accelerating our emissions, almost triple the annual rate from when I was a youngster, learning to ride a clunker of a bicycle. In the process we’ve already elevated our temperatures by 1.2 to 1.3 degrees C.

Now we’re racing toward 450 ppm. Unless we slow our emissions, says Scientific American, we’ll hit that mark in about 18 years.

Climate scientists don’t know for sure that anything calamitous will happen at 450 ppm. It could be just another increment, like a hair of once-brown head turning gray: deeper droughts, longer heat waves, more powerful typhoons and hurricanes. And, of course, warmer. Or it could be much worse, a big spurt of change. Some of the uncertainty has to do with the feedback mechanisms, such as the thawing of methane, a far more powerful heat-trapping gas, in the Arctic tundra. These are the unexpected, nonlinear, and frightening outcomes that scientists warn could result from pushing the climate system too hard.

Ice cores extracted from glaciers in Greenland, Antarctica, and elsewhere provide surprisingly insightful mirrors of the past. For example, the Greenland ice from 1,700 to 2,500 years ago shows levels of lead that indicate lead and silver mining and smelting by the Greeks and Romans. Ice cores also show CO2 in the atmosphere. Those now are 100 ppm higher than at any time in the last 800,000 years.

Writing in the New York Times Magazine last year, Jon Gertner noted the last time atmospheric CO2 levels were as elevated as now, three million years ago, sea levels were most likely 45 feet higher and giant camels roamed above the Arctic Circle.

The ski area Whistler Blackcomb several years ago put on line a run-of-the-river hydroelectric project on Fitzsimmons Creek.

That’s where Squamish and geoengineering comes in. Many scientists have concluded that the only way to avert the perhaps intolerable climatic changes is to conduct massive geoengineering, to reverse the effects of global warming. Geoengineering is an umbrella word, kind of like snow sliding, for two broad categories of activities.

One type of geoengineering seeks to deliberately tinker with the climate, to reverse existing and continued effects. One such idea, for example, would attempt to replicate the effect of volcanoes. In 1991, for example, Mt. Pinatubo, a volcano in the Philippines, exploded, pushing a plume of gas and ash—including nearly 20 million tons of sulfur dioxide—into the atmosphere, eventually reaching an altitude of 39 kilometers. The most particulates went skyward since the eruption of Krakatoa in 1883. The aerosols formed a global layer of sulfuric acid haze, cooling global temperatures.5 degrees C in the years 1991-93. Krakatoa had had a similar effect, depressing temperatures by as much as 1.2 degrees C in the northern hemisphere and also helping produce 38 inches of rain in Los Angeles, which averages 15 inches.

All manner of ideas have been formulated to intentionally disrupt the climate. One idea would have us deploying mirrors, perhaps in deserts or perhaps in outer space, to reflect back light into space. Another idea is to brighten clouds, to make them more reflective. Still another idea, crudely employed, would be to scatter materials over glaciers, once again to reduce the albedo effect of the native snow and ice. Then others have toyed with dumping iron into the ocean, to spur the growth of carbon-sucking algae. None of these ideas have gotten very far.

The second major type of geoengineering seeks to withdraw carbon dioxide from the atmosphere. The International Panel on Climate Change’s 2014 report surprised many by identifying 116 scenarios in which global temperatures could be prevented from rising more than 2 degrees C. Of these, 111 scenarios involve sucking massive quantities of CO2, from the atmosphere. As Wired magazine noted in a story last December, the goal is to attain “negative emissions,” perhaps lowering CO2, emissions below 400 ppm, even down to 350 ppm, as Bill McKibben proposes.

Trees suck carbon, but they do grow slowly, don’t they? Other ideas involve growing plants and then harvesting them, burning them, and producing energy in that way. Such ideas have generally been dismissed as impractical for the kind of carbon reduction needed in the next 30 years, simply because of the space required. As Wired noted, just growing the crops needed to fuel these bio-energy plants would require a landmass one to two times the size of India—and this transformation would have to occur within the lifetimes of the millennial generation.

In Squamish, a relatively new company called Carbon Engineering is capturing air then using industrial processes to remove the carbon dioxide. Several similar processes are being tried in other experiments around the world.

David Keith, now of Harvard University, founded the company in 2015. He obtained funding from two billionaires, Microsoft founder Bill Gates and Norman Murray Edwards, who has a big stake in the oil sands of Alberta and also owns the Fernie, Kimberley, Kicking Horse, and other resorts of British Columbia.

Being of a different income class than these billionaires, I stayed at the hostel in Squamish, sharing a room with about 35 other guys. (There are times, if rare, when I am actually glad for my hearing loss.) The next morning I drove around Squamish, visiting the Sikh temple, watching immigrant families frolic on the waterfront, and admiring the giant rock formation overlooking the town. Only later, after returning to Vancouver, did I learn that a base jumper had leaped to his death from the granitic monolith of the Stawamus Chief at almost precisely that same time. The parachute of the victim, an ex-Marine, had failed to deploy.

At length, I found Carbon Engineering on a sliver of land jutting into Howe Sound. Peering over the locked gate of the chain-link fence that Sunday morning I saw a long metal shed, several tanks, pipes, and a shaft.

The New Yorker’s Elizabeth Kolbert, when she arrived a year later, got a tour. She described the industrial plumbing but was struck more by the fact that the site had been previously used to process contaminated water. Carbon Engineering, she added, was engaged in a process that fell somewhere between a toxic cleanup and alchemy.

A story in the Guardian described the great challenge of this alchemy using the example of M&Ms. If you were allowed to eat every red M&M in a bag, it would be easy to do so if they were but one of every 10 in a bag. But, if the concentration fell to one in every 2,500—the concentration of CO2 in the atmosphere—you might just give up on the red M&M’s.

Carbon Engineering has been testing a method of extracting carbon dioxide from the atmosphere at Squamish.

Carbon Engineering in its plant at Squamish has modified old processes to address this challenge. The process uses a strong hydroxide solution to capture CO2 in a structure modeled on an industrial cooling tower and convert it into a carbonate. Next small pellets of calcium carbonate are precipitated from the carbonate solution. The calcium carbonate, once dried, is then heated, to break apart the CO2 and residual calcium oxide.

According to the company website, the plan is to move to commercialization, creating industrial-scale air-capture facilities outside of cities and on non-agriculture land.

But there’s more. Carbon Engineering’s vision combined this direct air capture technology with water electrolysis and fuels synthesis to produce liquid hydrocarbon fuels. In this process, the CO2 and hydrogen are thermocatalytically reacted to produce syngas and reacted again to produce hydrocarbons. In principle, a wide variety of hydrocarbons can be generated, but the company says it intends to focus on providing a product that replaces diesel and jet fuel. The plant at Squamish has been producing a barrel a day of synthetic fuel.

“If we’re successful at building a business of carbon removal, these are trillion-dollar markets,” Adrian Corless, then chief executive of Carbon Engineering, told Kolbert.

But could it do so cost-effectively? That has been the big question facing Carbon Engineering and every other company organized to suck carbon dioxide out of the atmosphere. Cost estimates had run up to $600 a ton or even more.

Scale is what matters. Can the process be scaled? That was the chief criterion in Richard Branson’s Virgin Earth Challenge. He offers $25 million for the first scalable solution for removing greenhouse gases. So far, the money has been unclaimed.

On June 7, Carbon Engineering announced publication of a peer-reviewed paper in the energy journal called Joule that declares that the process tested at Squamish since 2015 has been refined such that it can done for as low as $94 per metric ton. The news—if not all the paper’s qualifying statements about financial assumptions and so forth—was quickly splashed around on BBC and other international news organizations.

“Imagine driving up to your local gas station and being able to choose between regular, premium or carbon-free gasoline,” offered the National Geographic.

The BBC, after describing the “tangle of pipes, pumps, tanks, reactors, chimneys and ducts on a messy industrial site,” concluded that the process underway at Squamish “could just provide the fix to stop the world tipping into runaway climate change.”

“I hope this changes views about this technology from being this thing which people think is a magic savior, which it isn’t, or that it is absurdly expensive, which it isn’t, to an industrial technology that is do-able and can be developed in a useful way,” David Keith, a founder of Carbon Engineering, told BBC News.

In 2010, I had met Keith in Calgary, where he was then teaching, with dual appointments at the Massachusetts Institute of Technology and the University of Calgary. This was on the tail-end of a trip to Fort McMurray, also courtesy of the Canadian government, designed to show-and-tell why the oil/tar sands were not such a terrible thing.

A freighter at the dock at Squamish, B.C.

To my surprise, the Canadian consulate media liaison in Denver—a former bump-skier from Vail—had wanted us to meet with David Keith. I was impressed, because even then I was aware of some of Keith’s big-picture thinking.

Keith, now 54, comes across as somebody deeply loving of the same things as most people in mountain towns do. He grew up in Canada, the son of a researcher with the Canadian Wildlife Service who did groundbreaking work on the insidious effects of pesticides; his mother was a historian.

After graduating from the University of Toronto with a degree in physics, Keith took journeys to the Arctic. In the first trip he camped alone in a remote region of Labrador for three weeks. Then he spent four months living in a plywood shack in the middle of the Arctic Archipelago, tracking walruses with a polar bear biologist. He has said it was one of the happiest times of his life.

He continues to seek out solitude in wonderful places. On a recent honeymoon he went backpacking in northern British Columbia. Protecting the climate of existing ecosystems and places clearly drives him.

Some of that thinking has been at meetings convened during the 1990s at the Aspen Global Change Institute. One of the speakers Keith heard had been a proponent of using nuclear devices for massive earth-moving goals, such as digging new canals. But the speaker by then was talking about geoengineering as a way of addressing the massive challenge of carbon dioxide emissions.

As a civilization, we’ve done our best to tinker with weather. Jeff Goodell, in his 2010 book “How to Cool the Planet,” offers a delightful history of the flimflam artists of the early 20th century who promised they could deliver rain to soak farmers’ fields and fill reservoirs in San Diego. After World War II, such efforts became more scientific, with the deliberate seeding of clouds with silver iodide and other substances to produce rain and snow.

Vail, the ski area operator, has been paying to seed clouds over Vail Mountain since a disastrous drought in 1977 as well as other of its properties. So do major water utilities, such as Denver. This is despite a major, 10-year study bankrolled by Wyoming that found only marginal success of cloud seeding.

The U.S. government, through a program called Project Plowshare, in the 1960s and early 1970s explored the idea of using nuclear devices to move massive amounts of Earth. One of the ideas was to thoroughly shake up the subterranean in order to unloose natural gas encased in tight rocks. Call it nuclear fracking. One of those blasts occurred west of Aspen and Vail in 1969, near the town of Parachute. It created rubble, all underground, but no natural gas worth anything. It was radioactive. At last, the U.S. government pulled the plug, in what one Cold War analyst says “the reluctant admission that a nuclear utopia was not imminent.”

In Calgary, Keith wouldn’t singularly bad-mouth the tar sands. (Because this was a Canadian government trip, it was always “oil sands,” and that’s what Keith said, too). But what stands out from my notes almost eight years later is his insistence that all our efforts to that day had been largely symbolic. “For the United States and Canada, motivation for action that goes beyond symbolic is very low,” he said.

“It’s important to be realistic about this,” he added.

In his 2013 book, “The Case for Climate Engineering,” Keith articulated the same thought about a disconnect between efforts and outcome. “Why has the spending on clean energy produced such meager results?” he asked. “Either the cost of cutting emissions is much higher than analysts’ estimates of what’s needed or the money is getting grossly misspent. Carbon emissions are so large that deep cuts can only be realized by actions that are cost-effective and scalable.”

Cost effective and scalable remain the key words. The paper in the journal published last week described a rate of “levelized cost per tonne of CO2 captured from the atmosphere ranging from $94 to $232.”

That is still a wide range, and, in any event, it’s well above the world’s highest carbon tax, British Columbia’s $35 per tonne; it is set to reach $50 a tonne by 2021. The point is that the price of carbon emissions must rise substantially or the cost of removing it must be lowered substantially before there will be any traction.

Keith has also been working in the other realm of geoengineering. Keith and another Harvard scientist, Frank Keutsch, had planned to launch a high-altitude balloon, tethered to a gondola with propellers and sensors, to spray a fine mist of materials such as sulfur dioxide, alumina, or calcium carbonate into the stratosphere above Arizona. The sensors, as he told MIT Technology Review, would measure the reflectivity of the particles, the degree to which they disperse or coalesce, and the way they interact with other compounds in the atmosphere.

Evening in Vancouver.

Should we even pretend to think that technology can come to our aid? Conferences and papers so far debate this very question. Some see it as akin to setting off bombs underground in Colorado. Even Keith has said repeatedly that geoengineering is secondary to reducing our emissions.

Many scientists have argued we shouldn’t even try. Even if successful, would it then allow us to dither on this path toward making a giant energy transition? We could just spew more and more carbon into the atmosphere. As the fracking revolution has taught us, we’re a very inventive species at figuring out how to get carbon from underground.

What about unintended consequences? When inventors in the Silicon Valley were creating smart phones, they probably weren’t imagining that people would be reading their phones as they drove down highways. For that matter, when Henry Ford began mass-producing cars in Detroit, he could not have imagined that one day transportation, primarily from cars and trucks, would be the leading emitter of CO2, emissions. He was creating a greater good, not a greater problem.

Then again, do we have a choice? We’re disrupting the climate through our small, unseen emissions of carbon dioxide millions and millions of times each day across the planet. We’ve already jumped off a cliff. Like the base jumper at the Chief, we had better hope we have a parachute to deploy. It’s too soon to say whether the industrial process for removing carbon dioxide from the air in the metal building in Squamish will be that parachute. But keep your eye on it. It’s terribly important.

Allen Best

2 thoughts on “Will geoengineering be the parachute that averts climate disaster?”

  1. See the dimming sun “Nova” after 911 attack scienctist notice a Global spike in solar radiation, conclusions suspected contrails were dimming solar radiation. My thoughts were could this be enhanced for planet cooling by a fuel additive?

Comments are closed.